
Management of evolving speci�cations using

category theory �

Virginie Wiels and Steve Easterbrook
NASA/WVU Software Research Lab

100 University Drive, Fairmont WV 26554, USA
fwiels,steveg@atlantis.ivv.nasa.gov

Abstract

Structure is important in large speci�cations for understanding, testing

and managing change. Category theory has been explored as framework

for providing this structure, and has been successfully used to compose

speci�cations. This work has typically adopted a \correct by construc-

tion" approach: components are speci�ed, proved correct and then com-

posed together in such a way to preserve their properties. However, in a

large project, it is desirable to be able to mix speci�cation and compo-

sition steps such that at any particular moment in the process, we may

have established only some of the properties of the components, and some

of the composition relations. In this paper we propose adaptations to

the categorical framework in order to manage evolving speci�cations. We

demonstrate the utility of the framework on the analysis of a part of a

software change request for the Space Shuttle.

1 Introduction

Structure is important in large speci�cations for the same reasons that it is

important in programs: the principles of modularity and information hiding

are essential for managing large-scale speci�cations [3]. A well-chosen structure

greatly facilitates understanding, validation, and modi�cation of a speci�cation.

In this paper, we are primarily concerned with the management of evolving

speci�cations, and especially the analysis of change requests. Ideally, we would

like a speci�cation structure that allows us to isolate changes within a small

number of components of a speci�cation, and to reason about the impacts of a

change on interconnected components.

Category theory has been proposed as framework for providing this struc-

ture, and has been successfully used to provide composition primitives in both

algebraic [16, 3] and temporal logic [4] speci�cation languages. Category the-

ory is ideal for this purpose, as it provides a rich body of theory for reasoning

�This work is supported by NASA grant NAG 2-1134

1



about objects and relations between them (in this case, speci�cations and their

interconnections). Also, it is suÆciently abstract that it can be applied to a

wide range of di�erent speci�cation languages. Finally, it lends itself well to

automation, so that, for example, the composition of two speci�cations can be

derived automatically, provided that the category of speci�cations obeys certain

properties (e.g. co-completeness). The drawback to category theory is that as

an abstract branch of mathematics, it is even further removed from practical

software engineering than most formal methods. Our philosophy has been to

hide as much as possible of the underlying theory from the user, whilst provid-

ing an environment for interconnecting speci�cations, and reasoning about the

resulting structures.

Work on category theory for software speci�cation has typically adopted a

\correct by construction" approach: components are speci�ed, proved correct

and then composed together in such a way to preserve their properties. However,

in a large project, it is desirable to be able to mix speci�cation and composition

steps such that at any particular moment in the process, we may have established

only some of the properties of the components, and some of the composition

relations. This re
ects the reality of large-scale speci�cations constructed by a

team of people. Such speci�cations are inconsistent for most of their lifecycle.

As the speci�cation evolves, each change may introduce many inconsistencies.

A \correct by construction" approach requires that these be eliminated before

the change can be applied to the speci�cation. In practice, it is often desirable

to temporarily ignore the inconsistencies, for two reasons. Firstly, if resolution

of an inconsistency depends on information that is not yet available, we wish

neither to hold up the development process, nor to force a premature decision.

Secondly, it is useful to be able to explicitly represent the inconsistencies, so

that we can reason about possible corrective actions.

In this paper we demonstrate how the categorical framework can be adapted

to manage evolving speci�cations. There are three elements to our approach:

(1) the ability to deal with morphisms that are not completely correct (some

proof obligations are not discharged); (2) the use of limits to provide information

about the potential e�ects of di�erent relationships on the system being built;

and (3) the integration of properties in the same framework as the speci�cations,

in order to facilitate their management and evolution.

The paper is structured as follows. Section 2 provides a brief overview of

some notions of category theory, suÆcient to understand the paper. Section 3

illustrates how the theory can be applied to the problem of composing speci�ca-

tions, using the category of speci�cations and speci�cation morphisms. Section

4 describes our adaptation of this framework to deal with the problems of evolv-

ing speci�cations. Section 5 provides an example of the framework applied to

the analysis of a part of a software change request for the Space Shuttle. Section

6 discusses implementations of the framework. Section 7 suggests avenues for

further research.

2



2 Category theory

In this section, we give the de�nitions of some notions of category theory that

we use in the remainder of the paper.

De�nition: category. A category is composed of two collections:

� the objects of the category,

� the morphisms (arrows) of the category.

These two collections must respect the following properties:

� each morphism f is associated with an object A that is its domain and an

object B that is its codomain. Notation: f : A! B

� for all morphisms f : A ! B and g : B ! C, there exists a composed

morphism g Æ f : A ! C and the composition law is associative, i.e. for

all h : C ! D, h Æ (g Æ f) = (h Æ g) Æ f

� for each object A of the category, there exists an identity morphism idA
such that:

8f : B ! A; idA Æ f = f

8f : A! B; f Æ idA = f

Category theory provides a framework to describe links between objects,

and to manipulate them by means of operations. Here we describe two such

operations: pushout and pullback.

De�nition: pushout. A pushout of a pair of morphisms with same source

f : A! B and g : A! C in a category is an object D and a pair of morphisms

p : B ! D and q : C ! D such that the square commutes (cf �gure 1):

p Æ f = q Æ g

and such that the following universal condition holds: for all objects D0 and all

morphisms p0 : B ! D0 and q0 : C ! D0 such that p0 Æ f = q0 Æ g, there exists a

unique morphism u : D ! D0 such that u Æ q = q0 and u Æ p = p0.

Intuitively, the second part of the de�nition ensures that the D chosen to

construct the pushout is the \minimal" such D amongst all the candidates D0.

The generalisation of this operation to several objects and morphisms is

called a colimit. A practical interpretation for the colimit is given by Goguen

in [5]:

\Given a species of structure, say widgets, then the result of interconnecting

a system of widgets to form a super-widget corresponds to taking the colimit

of the diagram of widgets in which the morphisms show how they are intercon-

nected."

3



C D-
q

A B-f

?

g

?

p

D0

u
@
@
@R

p0

A
A
A
A
A
A
AAUq0

HHHHHHHj

Figure 1: Pushout of two morphisms f and g

De�nition: pullback. A pullback of a pair of morphisms with same target

f : B ! A and g : C ! A in a category is an object D and a pair of morphisms

p : D ! B and q : D ! C such that the square commutes (cf �gure 2):

f Æ p = g Æ q

and such that the following universal condition holds: for all objects D0 and all

morphisms p0 : D0 ! B and q0 : D0 ! C such that p0 Æ f = q0 Æ g, there exists a

unique morphism w : D0 ! D such that q Æ w = q0 and p Æ w = p0.

C A-
g

D B-p

?

q

?

f

D0

w

@
@
@
@R

p0

HHHHHHHHj
q0

A
A
A
A
A
A
A
AU

Figure 2: Pullback of two morphisms f and g

The generalisation of this operation to several objects and morphisms is

called limit. There is also an intuition for limit in [5]:

\A diagram D in a category C can be seen as a system of constraints, and

then a limit of D represents all possible solutions of the system."

4



3 Modular speci�cation of systems

Category theory has been used for a number of years as a framework for com-

posing formal speci�cations based on early work by Goguen. Much of this work

has concentrated on composition of algebraic speci�cations. More recently, Fi-

adeiro and Maibaum have developed an approach where each component of a

system is described by a theory in temporal logic and theories are interconnected

by speci�cation morphisms [4]. Their approach has been adapted and applied

[12, 7] and a tool has been implemented. In this section, we brie
y present the

main notions of this framework.

3.1 Category of speci�cations

We work in a particular category: the category of speci�cations with speci�-

cations as objects and speci�cation morphisms as arrows. A speci�cation is

composed of two parts:

� the vocabulary needed to describe the component (we will call it extended

signature in the following to distinguish it from the classical notion of

(algebraic) signature), i.e. sorts, constants, attributes, actions;

� the behavior described by temporal logic axioms. In this paper we will

not present a particular logic, as we will concentrate solely on the struc-

tural part (relations between the speci�cations). The framework has been

applied to di�erent linear temporal logics with actions [4, 12].

A speci�cation is encapsulated by means of two notions: (extended) sig-

nature and locality. The signature is an initial means of delimiting the spec-

i�cation: each component has its own language (no global name space) and

the logic of each component is parameterized by the signature. Moreover, each

speci�cation must respect the locality property. This property states that the

attributes of the speci�cation can only be modi�ed by the actions of this speci-

�cation. This property is essential to encapsulate each component and control

the interactions between components.

A speci�cation morphism m : Spec1 ! Spec2 associates each vocabulary

element of Spec1 to a vocabulary element (of the same kind) of Spec2. The

image of the axioms of Spec1 by the morphism must be true in Spec2.

Fiadeiro and Maibaum showed that, with these de�nitions of speci�cation and

speci�cation morphisms, compositional veri�cation can be achieved because the

morphisms preserve all the properties. They also showed that the category of

speci�cations was cocomplete (all the colimits exist) [4], and this is also proved

by the implementation of this category in the tool (cf section 3.3 and appendix

A).

5



3.2 Speci�cation of systems.

The basic principle to specify a system using this framework is to specify each

component of a system separately and then use the pushout (or colimit) to

compose the speci�cations. A simple example will illustrate this. We wish to

specify a system consisting of two components, B and C, each having a given

behavior and one sending information to the other in a synchronous way. We

�rst specify each component independently by means of attributes (that char-

acterize the state of the component), actions the component can execute and

axioms establishing constraints on these attributes and actions. Component B

has an action send(I) where I is the type of information being sent; compo-

nent C has an action receive(Info). When both components are speci�ed, we

de�ne a third speci�cation (corresponding to A in �gure 1), which contains the

elements that are shared by the two components. In the example, it contains a

type I and an action com(I). We then de�ne two morphisms, one that maps I

and com(I) in A to I and send(I) in B, the other that maps I and com(I) in A

to Info and receive(Info) in C. These sub-speci�cation and morphisms allows

to identify the sorts I and Info and the actions send(I) and receive(I). When

we compute the pushout of this diagram, we get a speci�cation describing the

composed behavior of the two communicating components.

Based on this principle, Michel and Wiels have developed an extension of this

approach where components are speci�ed by modules with de�ned interfaces

and several interconnection patterns are provided to compose the modules [7]

(modules based on Ehrig and Mahr's work [3]). The aim of this framework is

to simplify the user's task and provide some guidance. We will not detail this

part here; however the extensions proposed in the following can be integrated

in this framework.

3.3 Tool

To support this speci�cation approach, a tool, Moka, has been developed [14].

It is implemented in layers. The �rst layer is a categorical kernel encoding

in SML the notions of category theory that are necessary for this approach,

essentially graphs, diagrams, categories, colimits, cocomplete categories, comma

categories and adjunction. The categorical kernel was developed by J. Sauloy

[10], following [9].

The second layer implements the notions of speci�cation and module in

an incremental way. Several di�erent categories are built using the general

constructions of the categorical kernel. These implementations are important,

they answer two needs: �nd a construction process for each of the categories we

need and prove that these categories are cocomplete (the construction process

corresponds to the proof). Some details about the constructions are given in

appendix A.

The third layer is an interface, in two parts: a language interface (external

speci�cation language and associated parser) and a graphical interface provid-

6



ing a friendlier access to the framework. The major part of the interface was

developed by P. Michel.

Moka can be linked to a model checker or a theorem prover that is used

to prove that the morphisms are correct and to verify some properties of the

speci�cations.

4 Extensions to handle evolving speci�cations

Until now, we have used the previous framework with a \correct by construc-

tion" approach: components are speci�ed, proved correct and then composed

together in such a way to preserve their properties. However, it is desirable to

be able to manage evolutions and to manage them at di�erent levels (require-

ments, design, test) in a uniform way. We thus propose to extend the previous

framework.

First, we present the basic principle that will allow us to handle partial

speci�cations that are not completely correct or correctly related to each other.

Then we explain how to represent di�erent relationships between components at

the same level of abstraction and present some operations that give information

on the e�ects of these relationships on the system that is being built (without

having to build it). We also show how to integrate the properties in the same

framework and manage them in a uniform way. Finally, we study the capacity

of this extended framework to deal with evolving speci�cations.

4.1 Morphisms and management of proof obligations

We saw in section 2 that a speci�cation morphism m : Spec1 = (Sig1; Ax1)!

Spec2 = (sig2; Ax2) must

� associate an element of Sig2 to each element of Sig1;

� preserve the axioms Ax1.

In the current version of the tool, each morphism is thus veri�ed at the

vocabulary level and at the behavior level. At the vocabulary level, the tool

checks that each element of Sig1 has an image by the morphism, that its image

is of the same kind (sort, constant, attribute, action) and has the same pro�le

(type checking). At the behavior level, the tool just performs a simple check: it

computes the di�erence between the sets of axioms Ax2 and Ax1 and generates

proof obligations for all the axioms that are in Ax1 but not in Ax2. These proof

obligations must be discharged for the morphism to be correct. It can be done

by proving that these axioms are logical consequences of Ax2, using a model

checker or a theorem prover.

To deal with incomplete speci�cations or morphisms, we need to relax the

framework. The basic principle is that we allow morphisms that are not com-

pletely correct: the vocabulary part is well-formed but the proof obligations

7



are not all discharged. It means that some inconsistencies may exist between

the components. We can still compose the speci�cations and we store proof

obligations associated to each morphism (and consequently to the target spec-

i�cation). This allows to deal with incomplete speci�cations and incomplete

relationships between speci�cations.

In the current tool environment, we store the speci�cations, modules, and

speci�cation morphisms. We will have to add some bookkeeping information

for each of these elements. This is discussed in section 6.

4.2 Relationships Between Speci�cations

In addition to morphisms that are not totally correct, we need to capture re-

lationships between speci�cations for which there is no morphism linking them

directly. Our approach here is to de�ne sub-speci�cations that represent areas

of overlap between speci�cations. There may be a number of such relationships

between any two speci�cations. Rather than de�ning a single sub-speci�cation

to capture the total relationship, we de�ne a separate sub-speci�cation for each

area of overlap. There are two advantages to this approach. First, it allows us

to reason about interactions between the areas of overlap. Second, it helps us

to maintain traceability because each area of overlap may have a di�erent ratio-

nale, and may evolve at a di�erent rate. We rely on the categorical framework

to manage the proliferation of speci�cations that may result.

Consider two speci�cations Sp1 and Sp2 and two sub-speci�cations (for ex-

ample R and R0), each expressing a relationship between the two components.

Each sub-speci�cation captures an area of overlap between the two speci�ca-

tions.

Sp1 Sp2

f1 g2

g1 f2

R R’

These sub-speci�cations link the two speci�cations at the vocabulary level.

De�ning an element e in a sub-speci�cation and associating it with e1 in Sp1

and e2 in Sp2 by means of two morphisms means that the two elements e1 and

e2 will be identi�ed in the system.

Interaction between relationships. We can use the limit of the diagram to

compute some information about the e�ects of the combination of the di�erent

overlaps. The limit of the diagram is an object containing the couples (e; e0)

such that f1(e) = g1(e0) and f2(e) = g2(e0), that is to say all the couples (e; e0)

(e 2 R and e0 2 R0) such that e and e0 are associated to the same elements by

the two relationships.

8



So this computation gives us the overlap of the overlaps.

E�ects of one relationship on the other. We can also compute the

pullback of f1 and g1. This gives the couples (e; e0) such that f1(e) = g1(e0).

We can then compute the image of these couples by (f2; g2). This gives all

the couples of elements of Sp2 that would be identi�ed (because of R) in the

system. And reciprocally, we can compute the pullback of f2 and g2.

This computation allows us to detect \unexpected" interactions between re-

lationships. An example of such an interaction is when the transitive closure

of the set of identity relationships de�ned in R and R0 results in an identity

relationship between two elements of Sp2 that has not otherwise been captured

explicitly.

Remark: in order to be able to compute the operations described previously,

we have to prove that the category of extended signatures is �nitely complete.

This issue is discussed in section 6.

Future work. At present, we have only analyzed relationships at the vo-

cabulary level (signatures), i.e. relationships between terminology of di�erent

speci�cations. Eventually we plan to study the e�ect of adding axioms to the

sub-speci�cations to express consistency relationships, and hence formalize the

notions presented in [2].

4.3 Properties

Once we have modeled relationships between speci�cations, we need to be able

to represent properties of speci�cations, especially those properties that we wish

to preserve as the speci�cation evolves. It is important for the V&V process

to be able to store these properties, but we do not want to embed them in the

speci�cations for traceability reasons.

Let us consider the basic following case: a system is composed of two com-

ponents speci�ed respectively by speci�cations Sp1 and Sp2. These two compo-

nents may share some elements declared in speci�cation Sp0. The speci�cation

of the whole system (called Sp12) is in this case obtained by computing the

pushout of s01 and s02.

Sp2 Sp12-

Sp0 Sp1-s01

?

s02

?

Properties can be associated to each speci�cation. These are the proper-

ties that we expect the component to respect; that we need to prove on the

9



component. We represent these properties in the same framework as the speci-

�cations and this allows us to use category theory and particularly categorical

computations to manage them.

The user de�nes the properties and the speci�cation they concern, for ex-

ample property ax1 concerning Sp1. We then create a speci�cation P1 with the

same vocabulary as Sp1 and ax1 as axioms, and we de�ne a morphism between

P1 and Sp1. Hence we have a \shadow" subsystem of the system, storing its

desired properties. For example, we would have for the system considered above

the following scheme:

Sp1 Sp2

Sp0

Sp12

P0

P2P1

s02s01

s212s112

ps0

ps1 ps2

The advantage of this approach is that the management of properties and

their status (proved, to be proved) is handled in a uniform way through the

management of morphisms and proof obligations.

Moreover, we add morphisms between the di�erent property speci�cations

by projecting the morphisms of the system speci�cation. On the example, we

get:

Sp1 Sp2

Sp0

Sp12

P0

P2P1

s02s01

s212s112

p02p01

ps1 ps2

ps0

This allows us to compute the properties associated to the speci�cation Sp12:

we just have to compute the pushout of P1 and P2 on P0. We get a property

speci�cation P12 and there is a morphism between P12 and Sp12.

10



Sp1 Sp2

Sp0

Sp12

P0

P2P1

P12

p02p01

p112 p212

s212s112

s01 s02

ps0

ps1 ps2

ps12

This morphism is obtained by applying the universal property of the pushout

in the following way:

P12 is the pushout of p01 and p02. And we have Sp12, s112 Æ ps1 and

s212 Æ ps2 such that s112 Æ ps1 Æ p01 = s212 Æ ps2 Æ p02 (*) so we know there

exists a morphism ps12 : P12 ! Sp12 such that s112 Æ ps1 = ps12 Æ p112 and

s212 Æ ps2 = ps12 Æ p212.

(*)Proof:

s112Æps1Æp01 = s112Æ s01Æps0 (because of the way p01 and s01 are built)

s112 Æ s01 Æ ps0 = s212 Æ s02 Æ ps0 (property of the pushout Sp12)

s212Æ s02Æps0 = s212Æps2Æp02 (because of the way p02 and s02 are built)

If no property is associated with one of the component speci�cations, we can

still compute the pushout by taking as property speci�cation a speci�cation

with the corresponding vocabulary but no axioms.

4.4 Management of evolving speci�cations

As pointed out in [8], dealing with changes is much easier with a structured

speci�cation. A well chosen structure helps to circumscribe the parts of the

speci�cation that must be modi�ed more easily and to evaluate the consequences

of the changes. We will now explain more precisely how this works in our frame-

work.

The speci�cation of a system is a diagram with a speci�cation for each

component, speci�cations and morphisms representing the relationships between

the components; and in some cases, speci�cations and morphisms representing

the properties of the components.

A change in the system may have di�erent consequences. The �rst case

is that the change corresponds to adding a new speci�cation in the system.

This does not induce any particular problems: thanks to the modularity of

11



the framework, it is just similar to a step in the construction of the system

speci�cation.

A change can also result in modifying an existing speci�cation or a relation-

ship between speci�cations. In this case, we �rst identify the parts that need to

be modi�ed. The operations presented in 4.2 help in modifying the components

and relationships and in understanding the impact of the changes. Then we

check every morphism departing from or arriving at these speci�cations. We

thus identify the consequences of the changes: if some related speci�cations

need to be modi�ed, this will be detected by the check on the morphisms. We

also update the proof obligations attached to the morphisms: the changes may

discharge some existing proof obligations, add new ones or necessitate re-proof

of already discharged obligations. In that case, it would be useful to store infor-

mation about already proved obligations and how they were proved (we discuss

this in section 6). As the properties are integrated in the framework, they are

updated in a uniform way.

5 Example

We have worked on a Space Shuttle change request as part of an earlier case

study [15]. We think that this case study is a good testbed to explore the

management of changes in large speci�cations. Here, we give a brief account of

how our framework can be used on this case study, suÆcient to illustrate the

utility of the approach.

Introduction. As an operational vehicle, the Space Shuttle regularly needs

updates to its 
ight software to support new capabilities (such as docking with

the space station), replace obsolete technology (such as the move to GPS for

navigation), or to correct anomalies. A change request typically consists of a

selection of pages from current Computer Program Design Speci�cation (CPDS)

and Functional Subsystem Software Requirements (FSSR) speci�cations, with

handwritten annotations showing new and changed requirements.

Our example is based on change request #90724, the East Coast Abort

Landing (ECAL) automation CR. The change request covers changes needed to

automate the entry guidance procedures for an emergency landing at sites on

the East Coast or Bermuda, following a loss of thrust during launch, such that

orbit cannot be attained. The core functionality of the change request covers

the management of shuttle's energy during descent and the guidance needed to

align it with the selected runway. Our approach is to model the old requirements

in the FSSR �rst, and then update this model to re
ect the changes listed in

the CR.

The FSSR requirements are structured in functions. The main function

GREXEC is executed at each time cycle and calls 13 other functions depending

on the value of iphase (a variable representing the current guidance phase). We

will not give here the detailed speci�cation of the system and proofs of properties

but we will explain why the extended framework is useful.

12



Speci�cation of the system. We model each function using a separate

speci�cation. We will not present the bodies of these speci�cations here, but

concentrate instead on the structure. We assume the bodies are speci�ed in a

suitable temporal logic. The sequencing can be represented in the following way:

the GREXEC speci�cation has an action begin and an action end for each of

the 13 functions. Each function speci�cation has its own begin and end actions.

The action begin X in GREXEC is identi�ed to the action begin of the function

X speci�cation as follows:

Function X GREXEC

end-X

beg-Xbegin

end

S

beg-X

end-X

The GREXEC speci�cation describes the sequencing between functions and

each function speci�cation describes the corresponding behavior given in the

requirements. There are of course other sub-speci�cations describing shared

elements between speci�cations (e.g. shared variables). Thus we get a diagram

specifying the di�erent functions and how they are interconnected. The colimit

of this diagram is the speci�cation of the system.

Properties. Once we have modeled the speci�cation structure, we want

to check various properties of the system. For example, one of the variables

computed by the system is the commanded roll angle phic at. This angle is

initialized in GRINIT and computed in two di�erent functions TGPHIC and

GRPHIC. One of the validation properties concerning the commanded roll an-

gle phic at is that the commanded angle is held at zero during the �rst two

phases of entry (phases 5 and 6):

2(iphase = 5 _ iphase = 6! phic at = 0)

Using the structure of the speci�cations, we can decompose this global property

in several lemmas concerning di�erent speci�cations:

� In GRINIT, we have to prove that the property (iphase = 5 _ iphase =

6! phic at = 0) is true at the initialisation.

� In GRPHIC, we have to prove that if iphase is not equal to 4, then

phic at = 0.

� In GREXEC, we have to prove that

* whenever GRPHIC is called, iphase can only be equal to 4, 5 or 6;

* TGPHIC is not executed when iphase is equal to 5 or 6.

13



� The other functions do not modify phic at.

Each local property is stored in a property speci�cation and linked to the

speci�cation to which it relates. The local properties will be proved on the

component speci�cations. The colimit of the diagram of property speci�cations

then gives the properties that hold for the system.

Change request. The change request only modi�es the requirements for GR-

PHIC. So we know we only have to change the GRPHIC speci�cation and re-

consider the properties attached to this speci�cation.

The structure of the speci�cation helps a lot in identifying the part of the

speci�cation that must be modi�ed. The fact that the properties are integrated

in the same framework allows us to update the status of these properties (this

can be automatically computed by checking the morphisms) and thus know

which parts need to be proved or re-proved.

Conclusions. Our original approach to this case study was to build a single,

large formal model for the entry guidance requirements, validate this model

against the properties, update the model according to the change request and

then re-validate the properties. There were signi�cant problems in doing this

due to a loss of traceability between the change request and the formal model.

In particular, there were some aspects of the change request that could not be

validated as they had no correspondence in the formal model.

The framework we have described in this paper o�ers a number of advantages

for this case study. The structure of our formal speci�cations faithfully re
ects

the structure of the documented requirements. This improves our ability to trace

between the two, and ensures that we accurately capture the change request

in our model. It also improves readability of the formal speci�cation. The

structure then allows us to isolate changes, and reason about their impact.

At the property level, the framework allows compositional veri�cation: global

properties are decomposed following the structure of the speci�cation. The

integration of properties in the same framework allows us to manage them in a

uniform way.

6 Implementation

To support this framework, two kinds of extensions are needed to the tool

described in section 3.3. First, we need to be able to compute pullbacks and

limits of signatures. Then we have to add mechanisms to store and manage the

proof obligations.

Finite completeness of the category of extended signatures. The

problem is that the category of extended signatures as it is built in the tool

is not �nitely complete (cf appendix A and [11]). It has the products and

equalizers and thus the pullbacks, but no terminal object.

14



We have identi�ed two solutions to this problem. The �rst solution is to

de�ne and implement a slightly di�erent category of signatures that is �nitely

complete [11]. This solution is general but necessitates signi�cant updates of

the existing implementations.

The second solution is to consider only the vocabulary elements (constants,

attributes, actions) without their pro�les. In that case, we only need to compute

limits in the category of �nite sets, which is a �nitely complete category (cf

appendix A for details). This ad hoc solution is suÆcient for the computations

described in section 3.2. Indeed, we do not need to build limits as objects of

the category of speci�cations, we only use them to give additional information

to the user.

Management of the proof obligations. To support the use of partially

correct morphisms and the management of change, we need to add information

about the elements of the environment. For each morphism, we need to store

the following information:

� nature: user de�ned morphism or automatically generated morphism;

morphism of the system, between properties and system or between prop-

erties;

� proof obligations attached to this morphism with their status (proved, to

be proved).

For each speci�cation, we need to store the following information:

� nature: property or system; user de�ned or computed. Additionally, for

computed speci�cations, the operation and its arguments;

� morphisms from and to this speci�cation.

This additional information will be managed at the interface level in the

tool. These are essentially bookkeeping operations that support the user but do

not require further modi�cation at the category-theoretic level.

7 Conclusions and future work

We have presented in this paper several extensions to an existing categorical

framework. Category theory provides an excellent basis for providing structure

in formal speci�cations. It provides a coherent and well-founded theoretical

basis for representing structure in existing speci�cation languages, thus avoiding

the need to add structuring primitives within each language.

The extensions described in this paper were motivated by the need to support

the evolution of large speci�cations. For large speci�cations evolved by a team of

people, a \correct by construction" approach does not suÆce. Hence, we needed

to consider how to adapt the categorical framework to support the following

requirements:

15



� Support for traceability as a speci�cation evolves, by explicitly represent-

ing relationships between speci�cation components, and between speci�ca-

tion and validation properties. The framework needs to support an ability

to trace these relationships to their rationales, and to support tracing of

the impacts of change.

� Support for compositional veri�cation, so that global system properties

can be decomposed across the structure of a speci�cation, and such that

we limit the number of proofs that have to be re-checked when a change

is made.

� Support for the process of de�ning relationships (morphisms) between

speci�cation, with the ability to handle morphisms that are only partially

correct.

� An approach that adapts well to legacy systems, where changes to an

existing speci�cation need to be veri�ed.

To meet these requirements, we �rst adapted the categorical framework to

permit morphisms that are well-formed but not totally correct, and provided

bookkeeping support for keeping track of the proof obligations arising from each

morphism. We then provided a framework for capturing relationships between

speci�cation components by representing areas of overlap as sub-speci�cations.

By using a separate subspeci�cation for each area of overlap, we can reason

about interaction between these relationships, and can preserve traceability as

the speci�cation evolves. Finally, we incorporated speci�cation properties into

the same framework, so that the relationships between properties and speci�ca-

tions could be managed using the same approach.

We demonstrated how the framework might apply to a case study of the ver-

i�cation of a change request for the Space Shuttle. The approach should greatly

improve our ability to perform veri�cation and validation of change requests,

as it allows us to construct a model that more accurately re
ects the existing

structure of the speci�cation, and to isolate the impacts of the change using this

structure.

The application to the case study is still in progress, we need to implement

the proposed extensions in order to use them for the management of change. We

also plan to further study the representation of di�erent relationships between

components and their interaction as suggested in section 4.2.

Long term areas of future work include the use of di�erent speci�cation for-

malisms and eventually of heterogeneous speci�cations that allow us to better

describe di�erent parts of a system. We also wish to use another existing cate-

gorical framework, Specware [13], and compare it to our approach. Finally, we

are interested in the integration of test cases in the same framework [1].

16



References

[1] M. Doche, C. Seguin, and V. Wiels. Generation of functional test cases

from modular speci�cations. Submitted.

[2] S. Easterbrook and B. Nuseibeh. Using viewpoints for inconsistency man-

agement. Software Engineering journal, 11:31{43, 1996.

[3] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 2, vol-

ume 21 of EATCS Monographs on Theoretical Computer Science. Springer-

Verlag, 1990. Modules speci�cations and constraints.

[4] J. Fiadeiro and T. Maibaum. Temporal theories as modularisation units for

concurrent system speci�cation. Formal Aspects of Computing, 4(3):239{

272, 1992.

[5] J.A. Goguen. A Categorical Manifesto. Mathematical Structures in Com-

puter Science, 1(1), March 1991.

[6] J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the

semantics of computation. part1: Comma categories, colimits, signatures

and theories. Theoretical Computer Science, 31(1,2), May 1984.

[7] P. Michel and V. Wiels. A Framework for Modular Formal Speci�cation and

Veri�cation. In Proceedings of FME'97, number 1313 in LNCS. Springer-

Verlag, 1997.

[8] S. Miller and K. Hoech. Specifying the mode logic of a 
ight guidance

system in CoRE. In Proceedings of FMSP 98, Formal Methods in Software

Practice, 1998.

[9] D.E. Rydeheard and R.M. Burstall. Computational Category Theory. In-

ternational Series in Computer Science. Prentice Hall, 1988.

[10] J. Sauloy. Interconnexion de Modules. Internal ESF Research Report,

Centre d'tudes et de Recherches de Toulouse, 2 av. Edouard Belin, B.P.

4025, 31055 Toulouse Cedex, September 1992.

[11] J. Sauloy and V. Wiels. Finite completeness of the category of signatures.

Forthcoming.

[12] C. Seguin and V. Wiels. Using a Logical and Categorical Approach for the

Validation of Fault-tolerant Systems. In Proceedings of FME'96, volume

1051 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[13] Y.V. Srinivas and R. J�ullig. Specware: formal support for composing soft-

ware. In Proceedings of the conference on Mathematics for Program Con-

struction, 1995.

[14] V. Wiels. Modularit�e pour la conception et la validation formelles de

syst�emes. PhD thesis, ENSAE, 1997.

17



[15] V. Wiels and S. Easterbrook. Formal modeling of space shuttle software

change requests using SCR. Forthcoming.

[16] M. Wirsing. Algebraic speci�cation. In Handbook of theoretical computer

science, Formal Models and Semantics, volume B, pages 675{788. Elsevier

and MIT Press, 1990.

A Details on the categorical constructions

The second layer of the tool implements several categories: the category of �nite

sets, the category of algebraic signatures, the category of extended signatures,

the category of speci�cations, the category of parameterized speci�cations and

the category of modules. And all these categories are built as cocomplete cate-

gories.

We only give here details about the category of extended signatures. Its con-

struction process is inspired by the encoding of algebraic signatures as comma

categories [6].

Com3 category. The objects of the com3 category (L;R; S; T ) are triples

((a; u; b); (d; v); (e; w)) where L : A ! C, R : B ! C, S : D ! C, T : E ! C,

a is an object of A, b is an object of B, d is an object of D, e is an object

of E, u : L(a) ! R(b), v : S(d) ! R(b), w : T (e) ! R(b) are morphisms of

C. Morphisms of (L;R; S; T ) category are (f; g; h; i) where f : a1 ! a2 is a

morphism of A, g : b1 ! b2 is a morphism of B, h : d1 ! d2 is a morphism of

D, i : e1 ! e2 is a morphism of E such that the three squares commute:

L(a2) R(b2)-
u2

L(a1) R(b1)-u1

?

L(f)

?

R(g)

S(d2) R(b2)-
v2

S(d1) R(b1)-v1

?

S(h)

?

R(g)

T (e2) R(b2)-
w2

T (e1) R(b1)-w1

?

T (i)

?

R(g)

Cocompleteness. If L, S and T are cocontinuous functors and if A;B;C;D

are cocomplete categories, then (L;R; S; T ) is cocomplete.

The proof of this theorem is given in [14].

Completeness. If R is a continuous functor and if A;B;C;D are complete

categories, then (L;R; S; T ) is complete.

The proof of this theorem is given in [11].

18



Category of extended signatures. The category of extended signatures

(with attributes and actions) is the com3 category (SetToInf; Star; SetToInf; SetToInf)

where SetToInf : FinSet! InfSet transforms the �nite set S into the same

set S but viewed as an in�nite set, and Star : FinSet ! InfSet associates to

a set S the free monoid S�.

actions

pro�le

'

&

$

%
sorts

operators

S




S
�




�
�
�*

P
PPq

�
�
�
�

�
�
�
�

�
�
�
��
�
�
�

attributes

����9

H
H
HHY

At

Ac

At Ac

?
�
�/

S
Sw

The cocompleteness of the category of extended signatures results from

the cocompleteness of the category of �nite sets and the cocontinuity of the

SetToInf functor (which are proved in [14]).

Completeness. The category of extended signature is not complete (the

Star functor is not continuous). We can compute products and equalizers in

this category and thus pullbacks, but there is no terminal object [11]. We

can de�ne another category of enumerables extended signatures that is �nitely

complete as explained in [11] or adopt the following ad hoc solution.

We can consider only part of the speci�cations: a speci�cation is an object

(((Op; u; S�); (At; v); (Ac;w)); Ax), we project this to get an object (Op;At;Ac)

containing only the operators, attributes and actions of the speci�cation. We

also project the speci�cation morphisms (f; g; h; i) in (f; h; i). We can then

compute limits for each kind of element (operator, attributes, actions) in the

category of �nite sets, which is �nitely complete.

19


